By Topic

Using multivariate nested distributions to model semiconductor manufacturing processes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Gibson, D.S. ; Sch. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA, USA ; Poddar, R. ; May, G.S. ; Brooke, M.A.

This paper demonstrates the advantages of modeling semiconductor process variability using a multivariate nested distribution. This distribution allows estimation not only of correlation among various model parameters, but also allows each of those variations to he apportioned among the various stages of the process (i.e., wafer-to-wafer, lot-to-lot, etc.). This permits matched devices to be more accurately simulated, without having to develop customized models for each configuration of matching. The technique also provides focus for process improvement efforts into those areas with the maximum potential reward. Test structures have been designed and fabricated to facilitate extraction of the parameters for the multivariate nested distribution. Using data from a sample of these structures, a process model is built and analyzed; Monte Carlo techniques are then employed using SPICE and a probabilistic process model to predict the performance of a multiplying digital-to-analog converter (MDAC), and the results are compared to measured data from fabricated circuits. Simulations performed using a model built using the multivariate nested approach are shown to provide superior results when compared to simulations using currently accepted multivariate normal models

Published in:

Semiconductor Manufacturing, IEEE Transactions on  (Volume:12 ,  Issue: 1 )