By Topic

Fuzzy modeling for short term load forecasting using the orthogonal least squares method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mastorocostas, P.A. ; Dept. of Electr. & Comput. Eng., Aristotelian Univ. of Thessaloniki, Greece ; Theocharis, J.B. ; Bakirtzis, A.G.

A fuzzy modeling method is developed in this paper for short term load forecasting. According to this method, identification of the premise part and consequent part is separately accomplished via the orthogonal least squares (OLS) technique. Particularly, the OLS is first employed to partition the input space and determine the number of fuzzy rules and the premise parameters. In the sequel, a second orthogonal estimator determines the input terms which should be included in the consequent part of each fuzzy rule and calculate its parameters. Input selection is automatically performed, given an input candidate set of arbitrary size, formulated by an expert. A satisfactory prediction performance is attained as shown in the test results, showing the effectiveness of the suggested method

Published in:

Power Systems, IEEE Transactions on  (Volume:14 ,  Issue: 1 )