By Topic

Real-time sliding-mode observer and control of an induction motor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
A. Benchaib ; Lab. des Syst. Autom., Univ. de Picardie-Jules Verne, Amiens, France ; A. Rachid ; E. Audrezet ; M. Tadjine

This paper deals with the control and observation of an induction motor using a sliding-mode technique. The authors' aim is to regulate the speed and the square of the rotor flux magnitude to specified references. Assuming that all the states are measured, sliding surfaces are proposed within a sliding-mode control framework. Then, the stator voltages are derived such that the sliding surfaces are asymptotically attractive since, in practice, the rotor fluxes are not usually measurable, a sliding-mode observer is derived to estimate the rotor fluxes. Furthermore, it is shown that their observer is robust against modeling uncertainties and measurement noise. To illustrate their purpose, they present experimental results for a 0.37-kW induction motor obtained on a digital-signal-processor-based system (TMS 320C31/40 MHz). The experimental results show that the proposed control system is robust against rotor resistance variations

Published in:

IEEE Transactions on Industrial Electronics  (Volume:46 ,  Issue: 1 )