Notification:
We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

A performance comparison of homeless and home-based lazy release consistency protocols in software shared memory

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Cox, A.L. ; Dept. of Comput. Sci., Rice Univ., Houston, TX, USA ; de Lara, E. ; Hu, C. ; Zwaenepoel, W.

In this paper, we compare the performance of two multiple-writer protocols based on lazy release consistency. In particular, we compare the performance of Princeton's home-based protocol and TreadMarks' protocol on a 32-processor platform. We found that the performance difference between the two protocols was less than 4% for four out of seven applications. For the three applications on which performance differed by more than 4%, the TreadMarks protocol performed better for two because most of their data were migratory, while the home-based protocol performed better for one. For this one application, the explicit control over the location of data provided by the home-based protocol resulted in a better distribution of communication load across the processors. These results differ from those of a previous comparison of the two protocols. We attribute this difference to (1) a different ratio of memory to network bandwidth on our platform and (2) lazy diffing and request overlapping, two optimizations used by TreadMarks that were not used in the previous study

Published in:

High-Performance Computer Architecture, 1999. Proceedings. Fifth International Symposium On

Date of Conference:

9-13 Jan 1999