By Topic

Parallel Dispatch Queue: a queue-based programming abstraction to parallelize fine-grain communication protocols

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Falsafi, B. ; Sch. of Electr. & Comput. Eng., Purdue Univ., West Lafayette, IN, USA ; Wood, D.A.

This paper proposes a novel queue-based programming abstraction, Parallel Dispatch Queue (PDQ), that enables efficient parallel execution of fine-grain software communication protocols. Parallel systems often use fine-grain software handlers to integrate a network message into computation. Executing such handlers in parallel requires access synchronization around resources. Much as a monitor construct in a concurrent language protects accesses to a set of data structures, PDQ allows messages to include a synchronization key protecting handler accesses to a group of protocol resources. By simply synchronizing messages in a queue prior to dispatch, PDQ not only eliminates the overhead of acquiring/releasing synchronization primitives but also prevents busy-waiting within handlers. In this paper, we study PDQ's impact on software protocol performance in the context of fine-grain distributed shared memory (DSM) on an SMP cluster. Simulation results running shared-memory applications indicate that: (i) parallel software protocol execution using PDQ significantly improves performance in fine-grain DSM, (ii) tight integration of PDQ and embedded processors into a single custom device can offer performance competitive or better than an all-hardware DSM, and (iii) PDQ best benefits cost-effective systems that use idle SMP processors (rather than custom embedded processors) to execute protocols. On a cluster of 4 16-way SMPs, a PDQ-based parallel protocol running on idle SMP processors improves application performance by a factor of 2.6 over a system running a serial protocol on a single dedicated processor

Published in:

High-Performance Computer Architecture, 1999. Proceedings. Fifth International Symposium On

Date of Conference:

9-13 Jan 1999