By Topic

Object-based texture coding of moving video in MPEG-4

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
A. Kaup ; Network & Video Commun., Siemens AG, Munich, Germany

This paper describes some of the most promising segment-based coding techniques which have been investigated in the course of the MPEG-4 standardization process. Padding methods aim at extending arbitrarily shaped image segments to a regular block grid such that common hybrid block-based coding techniques can be applied. A simple and efficient padding technique employing low-pass extrapolation is outlined which yields a signal extension with high energy concentration in the low-frequency area. Simulations indicate that this method is well suited for block-based video coding, and clearly outperforms other low-complexity extrapolation methods with respect to coding efficiency. In contrast to padding techniques, shape-adaptive methods take advantage of the shape information available at the decoder side. A well-known representative of this class is the SA-DCT. However, having been primarily designed for intraframe coding, it is shown that the transform is suboptimal when applied to interframe coding. Using a suitable covariance model, it is demonstrated that a rescaled, orthonormalized transform much closer approximates the optimal shape-adaptive eigentransform of motion-compensated frame difference images. Rate distortion curves verify that orthonormalization improves coding efficiency in interframe coding by up to 2 dB while not adding to complexity. In a comparison, it is finally shown that extrapolation and SA-DCT perform very closely in the case of low data rates, while there is a clear advantage for the shape-adaptive transform in the case of high-quality video coding

Published in:

IEEE Transactions on Circuits and Systems for Video Technology  (Volume:9 ,  Issue: 1 )