By Topic

Blind image deconvolution using a robust GCD approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Pillai, S.U. ; Dept. of Electr. Eng., Polytech. Univ., Brooklyn, NY, USA ; Liang, B.

In this correspondence, a new viewpoint is proposed for estimating an image from its distorted versions in presence of noise without the a priori knowledge of the distortion functions. In z-domain, the desired image can be regarded as the greatest common polynomial divisor among the distorted versions. With the assumption that the distortion filters are finite impulse response (FIR) and relatively coprime, in the absence of noise, this becomes a problem of taking the greatest common divisor (GCD) of two or more two-dimensional (2-D) polynomials. Exact GCD is not desirable because even extremely small variations due to quantization error or additive noise can destroy the integrity of the polynomial system and lead to a trivial solution. Our approach to this blind deconvolution approximation problem introduces a new robust interpolative 2-D GCD method based on a one-dimensional (1-D) Sylvester-type GCD algorithm. Experimental results with both synthetically blurred images and real motion-blurred pictures show that it is computationally efficient and moderately noise robust

Published in:

Image Processing, IEEE Transactions on  (Volume:8 ,  Issue: 2 )