By Topic

Constant-gm rail-to-rail CMOS op-amp input stage with overlapped transition regions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Minsheng Wang ; Dept. of Electr. Eng., Texas A&M Univ., College Station, TX, USA ; T. L. Mayhugh ; S. H. K. Embabi ; E. Sanchez-Sinencio

Conventional techniques to achieve a constant-gm rail-to-rail complementary N-P differential input stage require complex additional circuitry. In addition, the frequency response and common-mode rejection ratio (CMRR) are degraded. An economical but efficient design technique to overcome these problems is proposed. The proposed technique strategically overlaps the transition regions of the tail currents for the n- and p-pairs to achieve constant overall transconductance. Experimental results demonstrate that gm variation can be restricted to within ±4% with improved CMRR and frequency response

Published in:

IEEE Journal of Solid-State Circuits  (Volume:34 ,  Issue: 2 )