By Topic

Satisfiability of word equations with constants is in exponential space

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Gutierrez, C. ; Dept. of Math., Wesleyan Univ., Middletown, CT, USA

In this paper we study solvability of equations over free semigroups, known as word equations, particularly G.S. Makanin's algorithm (1977), a general procedure to decide if a word equation has a solution. The upper bound time-complexity of Makanin's original decision procedure was quadruple exponential in the length of the equation, as shown by Jaffar. A. Koscielski and L. Pacholski (1996) reduced it to triple exponential, and conjectured that it could be brought down to double exponential. The present paper proves this conjecture. In fact we prove the stronger fact that its space-complexity is single exponential

Published in:

Foundations of Computer Science, 1998. Proceedings. 39th Annual Symposium on

Date of Conference:

8-11 Nov 1998