By Topic

LQG controllers for discrete-time multivariable systems with different transport delays in signal channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Grimble, M.J. ; Ind. Control Centre, Strathclyde Univ., Glasgow, UK

The design of stochastic LQG optimal tracking and regulating systems is considered for discrete-time systems with different time delays in different signal channels. A Wiener frequency domain solution for the closed-loop optimal controller is first obtained in the z-domain. This solution is physically realisable but involves the transport-delay operator. A state-space version of the controller is then derived from the frequency domain results. It is shown that the state equation based controller includes a Kalman predictor and state-estimate feedback. This confirms that a form of the separation principle holds for linear systems containing different transport delays on input and output signal channels. The Wiener solution applies to multivariable systems that may be unstable, nonminimum phase and nonsquare. The process and measuring system noise terms may be correlated and be coloured or white. It is shown that for certain classes of system the optimal controller can be implemented using a combination of finite dimensional and pure transport delay elements. The main advantage is that the estimator is of much lower order than the traditional solution. The gain computation involves a reduced state equal to that of the delay free system and is thereby independent of the length of the delay. The state-space form of the optimal controller may be implemented using either a finite impulse-response block, or alternatively in a Smith predictor form. In this latter case it has the same limitation, namely the plant must be open-loop stable. This restriction does not apply to either the Wiener or finite impulse response state space solutions

Published in:

Control Theory and Applications, IEE Proceedings -  (Volume:145 ,  Issue: 5 )