Cart (Loading....) | Create Account
Close category search window
 

Synchronous flow control in wormhole routed optical networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chang-Ching Sue ; Dept. of Electr. Eng., Nat. Taiwan Univ., Taipei, Taiwan ; Sy-Yen Kuo

In this paper, we propose a synchronous flow control mechanism in wormhole routed optical networks. It is expected that the benefit of shorter routing delay and smaller buffer size requirement in wormhole routing will be significant in optical networks. Different from the traditional bi-directional asynchronous back-pressure flow control, the flow control is modified to be unidirectional and synchronous. The size of synchronized control slot does not depend on the routing path length and the number of bits is a constant which is equal to the total number of virtual channels and nodes. The proposed flow control takes advantage of the restricted order of accessing channels in deadlock-free routing to broadcast their control information in a corresponding restricted order. Furthermore, in order to reduce the buffer size to only one unit, the virtual channels which share the same physical channel must be able to simultaneously transmit data. The low channel utilization induced by such mechanism is overcome by our modified source routing. In summary, this paper introduces a flow control mechanism which easily incorporates the benefit of wormhole routing into the limited-resource optical networks

Published in:

Parallel and Distributed Systems, 1998. Proceedings. 1998 International Conference on

Date of Conference:

14-16 Dec 1998

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.