By Topic

Unsupervised pattern recognition for the classification of EMG signals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
C. I. Christodoulou ; Dept. of Electron. Eng., London Univ., UK ; C. S. Pattichis

The shapes and firing rates of motor unit action potentials (MUAPs) in an electromyographic (EMG) signal provide an important source of information for the diagnosis of neuromuscular disorders. In order to extract this information from EMG signals recorded at low to moderate force levels, it is required: i) to identify the MUAPs composing the EMG signal, ii) to classify MUAPs with similar shape, and iii) to decompose the superimposed MUAP waveforms into their constituent MUAPs. For the classification of MUAPs two different pattern recognition techniques are presented: i) an artificial neural network (ANN) technique based on unsupervised learning, using a modified version of the self-organizing feature maps (SOFM) algorithm and learning vector quantization (LVQ) and ii) a statistical pattern recognition technique based on the Euclidean distance. A total of 1213 MUAPs obtained from 12 normal subjects, 13 subjects suffering from myopathy, and 15 subjects suffering from motor neuron disease were analyzed. The success rate for the ANN technique was 97.6% and for the statistical technique 95.3%. For the decomposition of the superimposed waveforms, a technique using crosscorrelation for MUAP's alignment, and a combination of Euclidean distance and area measures in order to classify the decomposed waveforms is presented. The success rate for the decomposition procedure was 90%.

Published in:

IEEE Transactions on Biomedical Engineering  (Volume:46 ,  Issue: 2 )