By Topic

A model-based algorithm for blood glucose control in Type I diabetic patients

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Parker, R.S. ; Dept. of Chem. Eng., Delaware Univ., Newark, DE, USA ; Doyle, F.J. ; Peppas, N.A.

A model-based-predictive control algorithm is developed to maintain normoglycemia in the Type I diabetic patient using a closed-loop insulin infusion pump. Utilizing compartmental modeling techniques, a fundamental model of the diabetic patient is constructed. The resulting nineteenth-order nonlinear pharmacokinetic-pharmacodynamic representation is used in controller synthesis. Linear identification of an input-output model from noisy patient data is performed by filtering the impulse-response coefficients via projection onto the Laguerre basis. A linear model predictive controller is developed using the identified step response model. Controller performance for unmeasured disturbance rejection (50 g oral glucose tolerance test) is examined. Glucose setpoint tracking performance is improved by designing a second controller which substitutes a more detailed internal model including state-estimation and a Kalman filter for the input-output representation The state-estimating controller maintains glucose within 15 mg/dl of the setpoint in the presence of measurement noise. Under noise-free conditions, the model based predictive controller using state estimation outperforms an internal model controller from literature (49.4% reduction in undershoot and 45.7% reduction in settling time). These results demonstrate the potential use of predictive algorithms for blood glucose control in an insulin infusion pump.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:46 ,  Issue: 2 )