By Topic

Flow electrification phenomenon in forced air-cooled rotating electric machines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Metwally, I.A. ; Dept. of Electr. Eng., Mansoura Univ., Egypt ; A-Rahim, A.A.

The factors affecting air-flow electrification under both HVDC and HVAC of variable frequency have been investigated experimentally on air flow between coaxial-cylinder and point-to-cylinder systems in a synthetic open cycle. Instantaneous measurements of the air flow electrification (AFE) `streaming current' and corona current `radial current' are presented as a function of mass flow rate, air temperature, pressure and relative humidity, electrode configurations, and voltage amplitude, polarity and frequency. The results reveal that both streaming and radial currents augment with voltage, relative humidity, mass flow rate, and temperature. On the other hand, both the streaming and the radial currents do not vary with pressure. Increasing the frequency of the applied HVAC significantly reduces the streaming current, while the radial current increases linearly. Similar trends of the results are observed for both electrode systems. For the point-to-cylinder system under negative HVDC, increasing the mass flow rate drastically reduces both corona inception and breakdown voltages, while positive HVDC gives only a slight effect. The present work confirms the significant role of the AFE on the field failures occurring inside forced air-cooled rotating electric machines. Therefore, such phenomena should be taken into consideration in the design of such machines

Published in:

Dielectrics and Electrical Insulation, IEEE Transactions on  (Volume:5 ,  Issue: 6 )