By Topic

Design and optimization of high-speed resonant cavity enhanced Schottky photodiodes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
M. Gokkavas ; Dept. of Electr. Comput. Eng., Boston Univ., MA, USA ; B. M. Onat ; E. Ozbay ; E. P. Ata
more authors

Resonant cavity enhanced (RCE) photodiodes (PD's) are promising candidates for applications in optical communications and interconnects where high-speed high-efficiency photodetection is desirable. In RCE structures, the electrical properties of the photodetector remain mostly unchanged; however, the presence of the microcavity causes wavelength selectivity accompanied by a drastic increase of the optical field at the resonant wavelengths. The enhanced optical field allows to maintain a high efficiency for faster transit-time limited PD's with thinner absorption regions. The combination of an RCE detection scheme with Schottky PD's allows for the fabrication of high-performance photodetectors with relatively simple material structures and fabrication processes. In top-illuminated RCE Schottky PD's, a semitransparent Schottky contact can also serve as the top reflector of the resonant cavity. We present theoretical and experimental results on spectral and high-speed properties of GaAs-AlAs-InGaAs RCE Schottky PD's designed for 900-nm wavelength

Published in:

IEEE Journal of Quantum Electronics  (Volume:35 ,  Issue: 2 )