By Topic

Low-loss low-confinement GaAs-AlGaAs DQW laser diode with optical trap layer for high-power operation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Buda, M. ; Fac. of Electr. Eng., Eindhoven Univ. of Technol., Netherlands ; van der Vleuten, W.C. ; Iordache, Gh. ; Acket, G.A.
more authors

A low-confinement asymmetric GaAs-AlGaAs double-quantum-well molecular-beam-epitaxy grown laser diode structure with optical trap layer is characterized, The value of the internal absorption coefficient is as low as 1.4 cm/sup -1/, while keeping the series resistance at values comparable cm with symmetrical quantum-well gradient index structures in the same material system. Uncoated devices show COD values of 35 mW/μm. If coated, this should scale to about 90 mW/μm. The threshold current density is about 1000 A/cm2 for 2-mm-long devices and a considerable part of it is probably due to recombination in the optical trap layer. Fundamental mode operation is limited to 120-180 mW for 6.5-μm-wide ridge waveguide uncoated devices and to 200-300 mW for 13.5-μm-wide ones, because of thermal waveguiding effects. These values are measured under pulsed conditions, 10 μs/l ms.

Published in:

Photonics Technology Letters, IEEE  (Volume:11 ,  Issue: 2 )