By Topic

Neural-network-based fuzzy model and its application to transient stability prediction in power systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mu-Chun Su ; Dept. of Electr. Eng., Tamkang Univ., Tamsui, Taiwan ; Chih-Wen Liu ; Shuenn-Shing Tsay

We present a general approach to deriving a new type of neural network-based fuzzy model for a complex system from numerical and/or linguistic information. To efficiently identify the structure and the parameters of the new fuzzy model, we first partition the output space instead of the input space. As a result, the input space itself induces corresponding partitions within each of which inputs would have similar outputs. Then we use a set of hyperrectangles to fit the partitions of the input space. Consequently, the premise of an implication in the new type of fuzzy rule is represented by a hyperrectangle and the consequence is represented by a fuzzy singleton. A novel two-layer fuzzy hyperrectangular composite neural network (FHRCNN) can be shown to be computationally equivalent to such a special fuzzy model. The process of presenting input data to each hidden node in a FHRCNN is equivalent to firing a fuzzy rule. An efficient learning algorithm was developed to adjust the weights of an FHRCNN. Finally, we apply FHRCNNs to provide real-time transient stability prediction for use with high-speed control in power systems. From simulation tests on the IEEE 39-bus system, it reveals that the proposed novel FHRCNN can yield a much better performance than that of conventional multilayer perceptrons (MLP's) in terms of computational burden and classification rate

Published in:

Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on  (Volume:29 ,  Issue: 1 )