By Topic

A taxonomy for describing matching and scheduling heuristics for mixed-machine heterogeneous computing systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Braun, T.D. ; Sch. of Electr. & Comput. Eng., Purdue Univ., West Lafayette, IN, USA ; Siegel, H.J. ; Beck, N. ; Boloni, L.
more authors

The problem of mapping (defined as matching and scheduling) tasks and communications onto multiple machines and networks in a heterogeneous computing (HC) environment has been shown to be NP-complete, in general, requiring the development of heuristic techniques. Many different types of mapping heuristics have been developed in recent years. However, selecting the best heuristic to use in any given scenario remains a difficult problem. Factors making this selection difficult are discussed. Motivated by these difficulties, a new taxonomy for classifying mapping heuristics for HC environments is proposed (Purdue HC Taxonomy). The taxonomy is defined in three major parts: the models used for applications and communication requests; the models used for target hardware platforms; and the characteristics of mapping heuristics, Each part of the taxonomy is described, with examples given to help clarify the taxonomy. The benefits and uses of this taxonomy are also discussed

Published in:

Reliable Distributed Systems, 1998. Proceedings. Seventeenth IEEE Symposium on

Date of Conference:

20-23 Oct 1998