By Topic

Multi-associative neural networks and their applications to learning and retrieving complex spatio-temporal sequences

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Lipo Wang ; Sch. of Comput. & Math., Deakin Univ., Geelong, Vic., Australia

Based on the previous work of a number of authors, we discuss an important class of neural networks which we call multi-associative neural networks (MANNs) and which associate one pattern with multiple patterns. As a computationally efficient example of such networks, we describe a specific MANN, that is, a multi-associative, dynamically generated variant of the counterpropagation network (MCPN). As an application of MANNs, we design a general system that can learn and retrieve complex spatio-temporal sequences with any MANN. This system consists of comparator units, a parallel array of MANNs, and delayed feedback lines from the output of the system to the neural network layer. During learning, pairs of sequences of spatial patterns are presented to the system and the system learns-to associate patterns at successive times in sequence. During retrieving, a cue sequence, which may be obscured by spatial noise and temporal gaps, causes the system to output the stored spatio-temporal sequence. We prove analytically that this system is capable of learning and generating any spatio-temporal sequences within the maximum complexity determined by the number of embedded MANNs, with the maximum length and number of sequences determined by the memory capacity of the embedded MANNs. To demonstrate the applicability of this general system, we present an implementation using the MCPN. The system shows desirable properties such as fast and accurate learning and retrieving, and ability to store a large number of complex sequences consisting of nonorthogonal spatial patterns

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:29 ,  Issue: 1 )