By Topic

A new method for constructing membership functions and fuzzy rules from training examples

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tzu-Ping Wu ; Dept. of Comput. Sci. & Inf. Eng., Nat. Chiao Tung Univ., Hsinchu, Taiwan ; Shyi-Ming Chen

To extract knowledge from a set of numerical data and build up a rule-based system is an important research topic in knowledge acquisition and expert systems. In recent years, many fuzzy systems that automatically generate fuzzy rules from numerical data have been proposed. In this paper, we propose a new fuzzy learning algorithm based on the α-cuts of equivalence relations and the α-cuts of fuzzy sets to construct the membership functions of the input variables and the output variables of fuzzy rules and to induce the fuzzy rules from the numerical training data set. Based on the proposed fuzzy learning algorithm, we also implemented a program on a Pentium PC using the MATLAB development tool to deal with the Iris data classification problem. The experimental results show that the proposed fuzzy learning algorithm has a higher average classification ratio and can generate fewer rules than the existing algorithm

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:29 ,  Issue: 1 )