Cart (Loading....) | Create Account
Close category search window

Effects of sensor placement on acoustic vector-sensor array performance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hawkes, M. ; Dept. of Electr. Eng. & Comput. Sci., Illinois Univ., Chicago, IL, USA ; Nehorai, Arye

We consider the role played by the sensor locations in the optimal performance of an array of acoustic vector sensors, First we derive an expression for the Cramer-Rao bound on the azimuth and elevation of a single far-field source for an arbitrary acoustic vector-sensor array in a homogeneous wholespace and show that it has a block diagonal structure, i.e., the source location parameters are uncoupled from the signal and noise strength parameters. We then derive a set of necessary and sufficient geometrical constraints for the two direction parameters, azimuth and elevation, to be uncoupled from each other. Ensuring that these parameters are uncoupled minimizes the bound and means they are the natural or “canonical” location parameters for the model. We argue that it provides a compelling array design criterion. We also consider a bound on the mean-square angular error and its asymptotic normalization, which are useful measures in three-dimensional bearing estimation problems. We derive an expression for this bound and discuss it in terms of the sensors' locations. We then show that our previously derived geometrical conditions are also sufficient to ensure that this bound is independent of azimuth. Finally, we extend those conditions to obtain a set of geometrical constraints that ensure the optimal performance is isotropic

Published in:

Oceanic Engineering, IEEE Journal of  (Volume:24 ,  Issue: 1 )

Date of Publication:

Jan 1999

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.