By Topic

Complex-valued neural networks with adaptive spline activation function for digital-radio-links nonlinear equalization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
A. Uncini ; Dipt. di Elettronica e Autom., Ancona Univ., Italy ; L. Vecci ; P. Campolucci ; F. Piazza

In this paper, a new complex-valued neural network based on adaptive activation functions is proposed. By varying the control points of a pair of Catmull-Rom cubic splines, which are used as an adaptable activation function, this new kind of neural network can be implemented as a very simple structure that is able to improve the generalization capabilities using few training samples. Due to its low architectural complexity (low overhead with respect to a simple FIR filter), this network can be used to cope with several nonlinear DSP problems at a high symbol rate. In particular, this work addresses the problem of nonlinear channel equalization. In fact, although several authors have already recognized the usefulness of a neural network as a channel equalizer, one problem has not yet been addressed: the high complexity and the very long data sequence needed to train the network. Several experimental results using a realistic channel model are reported that prove the effectiveness of the proposed network on equalizing a digital satellite radio link in the presence of noise, nonlinearities, and intersymbol interference (ISI)

Published in:

IEEE Transactions on Signal Processing  (Volume:47 ,  Issue: 2 )