By Topic

Analysis and synthesis of multicomponent signals using positive time-frequency distributions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Francos, A. ; Dept. of Electr. Eng., Technion-Israel Inst. of Technol., Haifa, Israel ; Porat, M.

A new approach to the analysis and reconstruction of multicomponent nonstationary signals from their time-frequency distribution (TFD) is presented. Specifically, we consider a TFD based on the recently introduced minimum cross entropy principle (MCE). This positive TFD is cross-terms free and, hence, has an advantage over the family of bilinear distributions. Based on the MCE-TFD, a new algorithm for reconstructing the phase and amplitude parameters of each component of the signal is developed. To evaluate the accuracy of the algorithm. Monte Carlo simulations are presented and compared with the corresponding Cramer-Rao bound. It is shown that the new algorithm is superior to presently available methods in both efficiency and performance. It is concluded that together with the MCE-TFD representation, the proposed approach provides a powerful tool for analysis of nonstationary multicomponent signals embedded in additive Gaussian noise

Published in:

Signal Processing, IEEE Transactions on  (Volume:47 ,  Issue: 2 )