Cart (Loading....) | Create Account
Close category search window
 

An analytical and numerical analysis of several locally conformal FDTD schemes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Railton, C.J. ; Centre for Commun. Res., Bristol Univ., UK ; Schneider, J.B.

The virtues of the finite-difference time-domain (FDTD) method for the electromagnetic analysis of arbitrary complex metal and dielectric structures are well known. Almost equally well known are the difficulties encountered by the technique when the material boundaries do not coincide with the Cartesian mesh. Until recently, there were few alternatives to the simple, but inaccurate, staircase approximation for these cases. However, over the past few years, there have been several solutions proposed, which maintain the simplicity and efficiency of the FDTD method while providing an accurate treatment of curved, offset, or sloping metallic boundaries. In this paper, analytical and numerical comparisons are presented and a clear recommended method is shown to emerge

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:47 ,  Issue: 1 )

Date of Publication:

Jan 1999

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.