By Topic

Arc restrikes yielding back-commutations in the contact gap of low voltage interrupters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ewald Gauster ; Institute of Switching Devices and High Voltage Technology, Technical University of Vienna, Vienna 1040, Austria ; Werner Rieder

Arc commutation from the arc chute back into the contact gap of a low voltage circuit-breaker caused by a high arc voltage pulse due to arc splitting was investigated in a model interrupter with the aid of a synthetic test method. In the experiment a well defined time after the arc left the contacts a high voltage ramp was applied across the contact gap. The criterion considered was the breakdown value of the voltage. Recovery time (in the range of 500 μs to 2 ms), geometry and materials of contacts (Cu, Ag/C, Ag/Ni, Ag/MeO) and walls (nongassing and gassing) were varied. Increasing recovery time increased the breakdown voltage significantly due to the decrease of the temperature in the contact area. The minimum breakdown value corresponded to the instantaneous reignition voltage. An increase of the wall distance caused an insignificant increase of the breakdown voltage due to the decrease of field distortion. Gassing wall materials caused slightly higher breakdown voltages than nongassing walls. Increasing contact gap from 2 mm to 4 mm increased the breakdown voltage. No influence was observed at lower (1.5 mm) and at higher contact gaps up to 7 mm. The influence of the contact material was generally little; Cu contacts yielded insubstantially lower breakdown voltages than the other contact materials investigated.

Published in:

IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part A  (Volume:21 ,  Issue: 4 )