By Topic

Time-domain envelope measurement technique with application to wideband power amplifier modeling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
C. J. Clark ; Aerosp. Corp., Los Angeles, CA, USA ; G. Chrisikos ; M. S. Muha ; A. A. Moulthrop
more authors

This paper presents a new time-domain measurement technique for repetitive microwave signals that is applied to modeling wideband power amplifiers. The measurement technique concept consists of recording the microwave signal after conversion to baseband using a calibrated downconverter, which improves measurement accuracy compared to measurements at the carrier frequency. The modeling section describes how such time-domain measurements can be used to model wideband signal effects in nonlinear power amplifiers. The commonly used memory-less envelope model is limited to use on narrowband signals. A new model is developed which includes a filter before the memory-less nonlinearity to capture the memory effects associated with wideband signals. It is demonstrated that the accuracy of wideband signal simulations can be improved by optimizing the model parameters based on time-domain measurements of wideband signals

Published in:

IEEE Transactions on Microwave Theory and Techniques  (Volume:46 ,  Issue: 12 )