By Topic

Modeling of multiple liner containment systems for high speed rotors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
K. A. Dulaney ; Center for Electromech., Texas Univ., Austin, TX, USA ; J. H. Beno ; R. C. Thompson

High speed composite rotors typically require containment structures to protect personnel and equipment from high energy rotor material and fragments that result from rotor burst events, which may occur during rotor overspeed. Loading to the containment structure during a burst event is a function of rotor design and containment geometry. A containment system proposed by The University of Texas at Austin Center for Electromechanics uses graphite-reinforced composite cylinders to dissipate radial kinetic energy from the rotor debris and reduce torque loads transmitted to the rotor housing and mounting hardware. Using an analogous mass-spring-damper system, a model was developed with bond graph techniques to estimate containment loads and response. The bond graphs, state equations and simulation results are compared with experimental results. The model is able to predict the general trends observed in experimental data and is used as a design tool for containment systems

Published in:

IEEE Transactions on Magnetics  (Volume:35 ,  Issue: 1 )