Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Microwave interferometry: application to precision measurements and noise reduction techniques

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ivanov, E.N. ; Dept. of Phys., Western Australia Univ., Perth, WA, Australia ; Tobar, M.E. ; Woode, R.A.

A concept of interferometric measurements has been applied to the development of ultra-sensitive microwave noise measurement systems. These systems are capable of reaching a noise performance limited only by the thermal fluctuations in their lossy components. The noise floor of a real time microwave measurement system has been measured to be equal to -193 dBc/Hz at Fourier frequencies above 1 kHz. This performance is 40 dB better than that of conventional systems and has allowed the first experimental evidence of the intrinsic phase fluctuations in microwave isolators and circulators. Microwave frequency discriminators with interferometric signal processing have proved to be extremely effective for measuring and cancelling the phase noise in oscillators. This technique has allowed the design of X-band microwave oscillators with a phase noise spectral density of order -150 dBc/Hz at 1 kHz Fourier frequency, without the use of cryogenics. Another possible application of the interferometric noise measurements systems include "flicker noise-free" microwave amplifiers and advanced two oscillator noise measurement systems.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:45 ,  Issue: 6 )