Cart (Loading....) | Create Account
Close category search window

Mapping instruction sequences onto EPOM-processor arrays: a framework for parallel data processing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Theis, J.-P. ; LG Semicon R&D Center, Willich, Germany ; Schlimper, H.

The paper introduces an optimized mapping methodology for mapping instruction sequences (ISs) onto EPOM-processor arrays. The new features of this mapping methodology result from a systematic specification and exploitation of both instruction and processor level parallelism: ultra-low granularity of ISs requires an allocation and scheduling of individual instructions onto the given processor array. Moreover, this mapping methodology is complete in the sense that it considers both array bus-bandwidths and processor resource constraints. The mapping methodology is based on two concepts: 1) instruction sequences (ISs) which represent a generalized form of directed cyclic graphs (DCGs) and allow efficient specification of algorithm parallelism, and graph nodes represent instructions from the instruction set of a target processor architecture (J.P. Theis, 1997); 2) the EPOM-processor architecture which represents an optimized target VLIW processor architecture for parallel implementation of ISs (J.P. Theis and L. Thiele, 1996) and especially suited for parallel image/multimedia processing (J.P. Theis and L. Thiele, 1995). Special attention is paid to the optimization, of the mapping process of ISs onto EPOM-processor arrays. Algorithm execution time minimization is used as optimization goal. The mapping methodology is partially based on integer linear programming and heuristic techniques. The solution time complexity is substantially reduced by developing a two-phase hierarchical model, decoupling processor array allocation from subsequent scheduling. The efficiency of this mapping methodology was validated through experimental results on ISs of well known algorithm routines

Published in:

High Performance Computing, 1998. HIPC '98. 5th International Conference On

Date of Conference:

17-20 Dec 1998

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.