By Topic

Doubly fed induction machine state variables model and dynamic response

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
M. G. Ioannides ; Dept. of Electr. Eng., Nat. Tech. Univ. of Athens, Greece

A state variables model in terms of d-q component displacements is deduced from linearized complex variable equations describing small-signal dynamic performance of the doubly fed induction machine. A state variables model in terms of magnitude and phase displacements of both stator and rotor voltages is deduced and studied. Transfer functions are also described. Study of the dynamics shows that the regions of instability are influenced by the variations of speed, of RMS value, and of phase angle of rotor applied voltage. This state variables model in polar coordinates eliminates the computations for the intermediate d-q components

Published in:

IEEE Transactions on Energy Conversion  (Volume:6 ,  Issue: 1 )