Cart (Loading....) | Create Account
Close category search window
 

On coordinated checkpointing in distributed systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Guohong Cao ; Dept. of Comput. & Inf. Sci., Ohio State Univ., Columbus, OH, USA ; Singhal, M.

Coordinated checkpointing simplifies failure recovery and eliminates domino effects in case of failures by preserving a consistent global checkpoint on stable storage. However, the approach suffers from high overhead associated with the checkpointing process. Two approaches are used to reduce the overhead: first is to minimize the number of synchronization messages and the number of checkpoints, the other is to make the checkpointing process nonblocking. These two approaches were orthogonal in previous years until the Prakash-Singhal algorithm combined them. In other words, the Prakash-Singhal algorithm forces only a minimum number of processes to take checkpoints and it does not block the underlying computation. However, we found two problems in this algorithm. In this paper, we identify these problems and prove a more general result: there does not exist a nonblocking algorithm that forces only a minimum number of processes to take their checkpoints. Based on this general result, we propose an efficient algorithm that neither forces all processes to take checkpoints nor blocks the underlying computation during checkpointing. Also, we point out future research directions in designing coordinated checkpointing algorithms for distributed computing systems

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:9 ,  Issue: 12 )

Date of Publication:

Dec 1998

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.