By Topic

Optimal parallel algorithms for finding proximate points, with applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
T. Hayashi ; Dept. of Electr. & Comput. Eng., Nagoya Inst. of Technol., Japan ; K. Nakano ; S. Olariu

Consider a set P of points in the plane sorted by the x-coordinate. A point p in P is said to be a proximate point if there exists a point q on the x-axis such that p is the closest point to q over all points in P. The proximate point problem is to determine all the proximate points in P. Our main contribution is to propose optimal parallel algorithms for solving instances of size n of the proximate points problem. We begin by developing a work-time optimal algorithm running in O(log log n) time and using n/loglogn Common-CRCW processors. We then go on to show that this algorithm can be implemented to run in O(log n) time using n/logn EREW processors. In addition to being work-time optimal, our EREW algorithm turns out to also be time-optimal. Our second main contribution is to show that the proximate points problem finds interesting, and quite unexpected, applications to digital geometry and image processing. As a first application, we present a work-time optimal parallel algorithm for finding the convex hull of a set of n points in the plane sorted by x-coordinate; this algorithm runs in O(log log n) time using n/logn Common-CRCW processors. We then show that this algorithm can be implemented to run in O(log n) time using n/logn EREW processors. Next, we show that the proximate points algorithms afford us work-time optimal (resp, time-optimal) parallel algorithms for various fundamental digital geometry and image processing problems

Published in:

IEEE Transactions on Parallel and Distributed Systems  (Volume:9 ,  Issue: 12 )