Cart (Loading....) | Create Account
Close category search window

Using local median as the location of the prior distribution in iterative emission tomography image reconstruction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Alenius, S. ; Signal Process. Lab., Tampere Univ. of Technol., Finland ; Ruotsalainen, U. ; Astola, J.

Iterative reconstruction algorithms like MLEM (Maximum Likelihood Expectation Maximization) can be regularized using a weighted roughness penalty term according to certain a priori assumptions of the desired image. In the R?RP (Median Root Prior) algorithm the penalty is set according to the deviance of a pixel from the local median. This allows both noise reduction and edge preservation. The prior distribution is Gaussian located around the median of a neighborhood of the pixel. Non-monotonic details smaller than a given limit are considered as noise and are penalized. Thus, MRP implicitly contains the general description of the characteristics of the desired emission image, and good localization of tissue boundaries is achieved without anatomical data. In contrast to the MLEM method, the number of iterations needs not be restricted and unlike many other Bayesian methods MRP has only one parameter. The penalty term can be applied to various iterative reconstruction algorithms. The assumption that the true pixel value is close to the local median applies to any emission images, including the 3D acquisition and images reconstructed from parametric sinograms

Published in:

Nuclear Science, IEEE Transactions on  (Volume:45 ,  Issue: 6 )

Date of Publication:

Dec 1998

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.