Cart (Loading....) | Create Account
Close category search window
 

Adaptive source-channel subband video coding for wireless channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Srinivasan, M. ; Dept. of Electr. Eng., Maryland Univ., College Park, MD, USA ; Chellappa, R.

This paper presents a general framework for combined source-channel coding within the context of subband coding. The unequal importance of subbands in reconstruction of the source is exploited by an appropriate allocation of source and channel coding rates for the coding and transmission of subbands over a noisy channel. For each subband, the source coding rate as well as the level of protection (quantified by the channel coding rate) are jointly chosen to minimize the total end-to-end mean-squared distortion suffered by the source. This allocation of source and channel coding rates is posed as a constrained optimization problem, and solved using a generalized bit allocation algorithm. The optimal choice of source and channel coding rates depends on the state of the physical channel. These results are extended to transmission over fading channels using a finite state model, where every state corresponds to an additive white Gaussian noise (AWGN) channel. A coding strategy is also developed that minimizes the average distortion when the channel state is unavailable at the transmitter. Experimental results are provided that demonstrate application of these combined source-channel coding strategies on video sequences

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:16 ,  Issue: 9 )

Date of Publication:

Dec 1998

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.