Cart (Loading....) | Create Account
Close category search window
 

Novel measurement scheme for injection-locking experiments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Troger, J. ; Lab. for Metrol., Fed. Inst. of Technol., Lausanne, Switzerland ; Nicati, P.-A. ; Thévenaz, L. ; Robert, P.A.

A novel experimental setup for injection-locking experiments is presented. The single-mode-fiber-based configuration allows one to precisely control the power and the polarization state of the light injected from the master laser into the slave laser cavity. Different behaviors typical for injection locking with single-mode semiconductor lasers (e.g., stable injection locking, undamped relaxation oscillations, nearly degenerate four-wave mixing, period doubling, chaotic behavior) are experimentally observed and theoretically verified using a rate-equation-based model. Measurements and calculations are entirely linked analytically and thoroughly compared by means of the corresponding power spectra. The good quantitative agreement between measurements and model validates the model, the analytical approach, and the experimental setup

Published in:

Quantum Electronics, IEEE Journal of  (Volume:35 ,  Issue: 1 )

Date of Publication:

Jan 1999

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.