By Topic

Sensorless torque control of salient-pole synchronous motor at zero-speed operation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Aihara, T. ; Fuji Electr. Corp. Res. & Dev. Ltd., Tokyo, Japan ; Toba, A. ; Yanase, Takao ; Mashimo, A.
more authors

A position and speed sensorless control using the counter electromotive force of a permanent-magnet motor (PM) debases the control performance at a low speed. We propose a controllable system at full speed, including a zero speed using saliency. At low speed, the sensorless control is made by observing a current ripple at a time when alternating voltage has been applied to a salient-pole motor. Also, for discriminating the S and N poles of the magnet, magnetic saturation is used. A device has been applied to the motor rotor to allow the magnetic saturation to come about easily. Furthermore, at a time of high speed, drive at a full-speed range has been accomplished by switching smoothly over to a sensorless driving system making use of counter electromotive force. All algorithms are implemented by software, and this system can operate successively from starting to high-speed operation. The paper discusses the operational principles at a low speed, analysis and experimental results, the control scheme, how to changeover the control mode at high speed, and the experimental results

Published in:

Power Electronics, IEEE Transactions on  (Volume:14 ,  Issue: 1 )