By Topic

Failure mechanisms of IGBTs under short-circuit and clamped inductive switching stress

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Trivedi, M. ; Dept. of Electr. Eng. & Comput. Sci., Illinois Univ., Chicago, IL, USA ; Shenai, K.

The application of insulated gate bipolar transistors (IGBTs) in high-power converters subjects them to high-transient electrical stress such as short-circuit switching and turn-off under clamped inductive load (CIL). Robustness of IGBTs under high-stress conditions is an important requirement. Due to package limitations and thermal parameters of the semiconductor, significant self-heating occurs under conditions of high-power dissipation, eventually leading to thermal breakdown of the device. The presence of a parasitic thyristor also affects the robustness of the device. In order to develop optimized IGBTs that can withstand high-circuit stress, it is important to first understand the mechanism of device failure under various stress conditions. In this paper, failure mechanisms during short-circuit and clamped inductive switching stress are investigated for latchup-free as well as latchup-prone punchthrough IGBTs. It is shown that short-circuit and clamped inductive switching cannot be considered equivalent in the evaluation of a device safe operating area (SOA). The location of thermal failure of latchup-free punchthrough IGBTs is shown to be different for the two switching stresses

Published in:

Power Electronics, IEEE Transactions on  (Volume:14 ,  Issue: 1 )