By Topic

Tradeoff between source and channel coding on a Gaussian channel

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Hochwald, B. ; Lucent Technol., AT&T Bell Labs., Murray Hill, NJ, USA

Consider a system that quantizes and encodes analog data for transmission across an additive noise Gaussian channel. To minimize distortion, the channel code rate must be chosen to optimally allocate the available transmission rate between lossy source coding and block channel coding. We establish tight upper and lower bounds on the channel code rate that minimizes the average distortion of a vector quantizer cascaded with a channel coder and a Gaussian channel, thus extending some recently obtained results for the binary-symmetric channel. The upper hounds are obtained by averaging, whereas the lower bounds are uniform, over all possible index assignments. Analytic expressions are derived for large and small signal-to-noise ratios, and also for large source vector dimension. As in the binary-symmetric channel, the optimal channel code rate is often substantially smaller than the channel capacity and the distortion decays exponentially with the number of channel uses. Exact exponents are derived

Published in:

Information Theory, IEEE Transactions on  (Volume:44 ,  Issue: 7 )