By Topic

Structurally adaptive modular networks for nonstationary environments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
V. Ramamurti ; Dept. of Electr. & Comput. Eng., Texas Univ., Austin, TX, USA ; J. Ghosh

Introduces a neural network capable of dynamically adapting its architecture to realize time variant nonlinear input-output maps. This network has its roots in the mixture of experts framework but uses a localized model for the gating network. Modules or experts are grown or pruned depending on the complexity of the modeling problem. The structural adaptation procedure addresses the model selection problem and typically leads to much better parameter estimation. Batch mode learning equations are extended to obtain online update rules enabling the network to model time varying environments. Simulation results are presented throughout the paper to support the proposed techniques

Published in:

IEEE Transactions on Neural Networks  (Volume:10 ,  Issue: 1 )