Cart (Loading....) | Create Account
Close category search window

A study of cloud classification with neural networks using spectral and textural features

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Bin Tian ; Dept. of Electr. Eng., Colorado State Univ., Fort Collins, CO, USA ; Shaikh, M.A. ; Azimi-Sadjadi, M.R. ; Haar, T.H.V.
more authors

The problem of cloud data classification from satellite imagery using neural networks is considered. Several image transformations such as singular value decomposition (SVD) and wavelet packet (WP) were used to extract the salient spectral and textural features attributed to satellite cloud data in both visible and infrared (IR) channels. In addition, the well-known gray-level cooccurrence matrix (GLCM) method and spectral features were examined for the sake of comparison. Two different neural-network paradigms namely probability neural network (PNN) and unsupervised Kohonen self-organized feature map (SOM) were examined and their performance were also benchmarked on the geostationary operational environmental satellite (GOES) 8 data. Additionally, a postprocessing scheme was developed which utilizes the contextual information in the satellite images to improve the final classification accuracy. Overall, the performance of the PNN when used in conjunction with these feature extraction and postprocessing schemes showed the potential of this neural-network-based cloud classification system

Published in:

Neural Networks, IEEE Transactions on  (Volume:10 ,  Issue: 1 )

Date of Publication:

Jan 1999

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.