By Topic

Design and analysis of micromechanical tunable interferometers for WDM free-space optical interconnection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Toshiyoshi, H. ; Inst. of Ind. Sci., Tokyo Univ., Japan ; Kobayashi, M. ; Miyauchi, D. ; Fujita, H.
more authors

This paper proposes a new concept of high density chip-to-chip optical interconnection based on wavelength division multiplexing (WDM), which can be realized as a microelectromechanical system (MEMS) device. The output signals from a preprocessing integrated circuit (IC) chip (N channels) are converted to optical signals of different wavelengths by using wavelength tunable laser diodes and projected onto an array of wavelength-selective photodiodes. Channel connection is made by wavelength matching between the light sources and detectors, by using micromechanical Fabry-Perot interferometers. In this scheme arbitrary 1 to 1 connection as well as 1 to N or N to 1 connection is available. Since the input/output connections are made in an optical manner, the switching state can be reconfigured and the whole switching system can be integrated in a compact space. We have investigated design principle of the micromechanical Fabry-Perot interferometers for tunable photodiodes to maximize the switching contrast and channel density in a given wavelength range. The preliminary interferometer arrays are implemented by silicon-based surface micromachining

Published in:

Lightwave Technology, Journal of  (Volume:17 ,  Issue: 1 )