By Topic

Bounds on the pairwise error probability of coded DS/SSMA communication systems in Rayleigh fading channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tsao-Tsen Chen ; Wireless Syst. Core Technol. Dept., Lucent Technol., Whippany, NJ, USA ; Lehnert, J.S.

Arbitrarily tight upper and lower bounds on the pairwise error probability (PEP) of a trellis-coded or convolutional-coded direct-sequence spread-spectrum multiple-access (DS/SSMA) communication system over a Rayleigh fading channel are derived. A new set of probability density functions (PDFs) and cumulative distribution functions (CDFs) of the multiple-access interference (MAI) statistic is derived, and a modified bounding technique is proposed to obtain the bounds. The upper bounds and lower bounds together specify the accuracy of the resulting estimation of the PEP, and give an indication of the system error performance. Several suboptimum decoding schemes are proposed and their performances are compared to that of the optimum decoding scheme by the average pairwise error probability (APEP) values. The approach can be used to accurately study the multiple-access capability of the coded DS/SSMA system without numerical integrations

Published in:

Communications, IEEE Transactions on  (Volume:46 ,  Issue: 12 )