By Topic

A unified approach to the probability of error for noncoherent and differentially coherent modulations over generalized fading channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Simon, Marvin K. ; Jet Propulsion Lab., Pasadena, CA, USA ; Alouini, M.-S.

We present a unified approach to determine the exact bit error rate (BER) of noncoherent and differentially coherent modulations with single and multichannel reception over additive white Gaussian noise and generalized fading channels. The multichannel reception results assume independent fading in the channels and are applicable to systems that employ post-detection equal gain combining. Our approach relies on an alternate form of the Marcum Q-function and leads to expressions of the BER involving a single finite-range integral which can be readily evaluated numerically. Aside from unifying the past results, the new approach also allows for a more general solution to the problem in that it includes many situations that in the past defied a simple solution. The best example of this occurs for multichannel reception where the fading on each channel need not be identically distributed nor even distributed according to the same family of distributions

Published in:

Communications, IEEE Transactions on  (Volume:46 ,  Issue: 12 )