Cart (Loading....) | Create Account
Close category search window
 

Nonlinear control of a heating, ventilating, and air conditioning system with thermal load estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Arguello-Serrano, B. ; Dept. of Electr. & Comput. Eng., Puerto Rico Univ., Mayaguez, Puerto Rico ; Velez-Reyes, M.

This paper presents a nonlinear controller for a heating, ventilating, and air conditioning (HVAC) system capable of maintaining comfort conditions under time varying thermal loads. The controller consist of a regulator and a disturbance rejection component designed using Lyapunov stability theory. The mitigation of the effect of thermal loads other than design loads on the system is due to an online thermal load and state estimator. The availability of the thermal load estimates allows the controller to keep comfort regardless of the thermal loads affecting the thermal space being heated or cooled. Simulation results are used to demonstrate the potential for keeping comfort and saving energy of this methodology on a variable-air-volume HVAC system operating on cooling mode

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:7 ,  Issue: 1 )

Date of Publication:

Jan 1999

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.