By Topic

Robust automatic steering control for look-down reference systems with front and rear sensors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Guldner, J. ; BMW Tech. GmbH, Munchen, Germany ; Sienel, W. ; Han-Shue Tan ; Ackermann, J.
more authors

This paper describes a robust control design for automatic steering of passenger cars. Previous studies showed that reliable automatic driving at highway speed may not be achieved under practical conditions with look-down reference systems which use only one sensor at the front bumper to measure the lateral displacement of the vehicle from the lane reference. An additional lateral displacement sensor is added here at the tail bumper to solve the automatic steering control problem. The control design is performed stepwise: an initial controller is determined using the parameter space approach in an invariance plane; and this controller is then refined to accommodate practical constraints and finally optimized using the multiobjective optimization program. The performance and robustness of the final controller was verified experimentally at California PATH in a series of test runs

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:7 ,  Issue: 1 )