Cart (Loading....) | Create Account
Close category search window
 

Transient analysis of multiconductor lines above a lossy ground

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rachidi, F. ; Dept. of Electr. Eng., Toronto Univ., Ont., Canada ; Nucci, C.A. ; Ianoz, M.

In this paper, we first extend the Sunde logarithmic approximation for the single-wire line ground impedance to the case of a multiconductor line. The new approximate forms are compared to the general expressions which involve integrals over an infinitely long interval and an excellent agreement is found. The inverse Fourier transform of the ground impedance presents singularities which complicate the numerical solution of the transmission line equations. The order of the singularity is reduced by 1, and a careful numerical treatment is then employed to derive an equivalent and numerically more appropriate form of coupling equations in which there is no longer a singular term. Finally, finite-difference time-domain (FDTD) solutions of the coupling equations are presented and the theory is applied to calculate lightning-induced voltages on a multiconductor line. The lightning-induced voltages are calculated for the case of lossless/lossy, single-conductor/multiconductor lines and the effect of ground losses and the presence of other conductors on the magnitude and shape of induced voltages are illustrated

Published in:

Power Delivery, IEEE Transactions on  (Volume:14 ,  Issue: 1 )

Date of Publication:

Jan 1999

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.