Cart (Loading....) | Create Account
Close category search window
 

A comprehensive delay macro modeling for submicrometer CMOS logics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Daga, J.M. ; ATMEL, Rousset, France ; Auvergne, D.

The increasing need for high-performance, cost-effective, application-specific integrated circuits, associated to the reduction of design cycle time, compels designers to manage and optimize the circuit speed performance at each step of the design flow. Circuits are usually designed at gate level; the gate selection or sizing and their placement are driven by estimated delay, hence the need for accurate estimations at the logical level. In the submicrometer range, the gap between gate-level logical estimations and transistor-level electrical simulations dramatically increases. We propose here a comprehensive analytical modeling of the speed performance of CMOS gates with an accuracy comparable to electrical simulators. A design-oriented expression of delay is first developed for CMOS inverters, considering input slope, input-to-output capacitance coupling, and short-circuit current effects. The extension to more complex gates is proposed using a serial array reduction technique taking account of the gate input dependency and the input-slope-induced nonlinearity. Validations are obtained over a large range of design, load, and input slope conditions by comparison with SPICE simulations (level 6 with 0.65-μm foundry specified card model) used as a reference

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:34 ,  Issue: 1 )

Date of Publication:

Jan 1999

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.