Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Tunability of polarization-insensitive wavelength converters based on four-wave mixing in semiconductor optical amplifiers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lacey, J.P.R. ; Dept. of Electr. & Electron. Eng., Melbourne Univ., Parkville, Vic., Australia ; Summerfield, M.A. ; Madden, S.J.

Optically transparent wavelength converters, in which the output is a wavelength-converted replica of the input, may be required to improve performance and ease management in future “mixed-mode” wavelength division multiplexed networks. Four-wave mixing (FWM) in semiconductor optical amplifiers (SOA's) is an attractive optically transparent wavelength conversion technique because it allows pump tunability. So far, three schemes for polarization-insensitive FWM in SOA's have been demonstrated, using two copolarized pumps, two orthogonal pumps, and polarization diversity. This paper presents a comparison of their output signal-to-noise ratio, and hence their ultimate tunability. A simple analytical model for FWM in SOA's is used to predict that when each scheme has the same inputs and produces the same frequency shift, the polarization-diversity scheme has the highest output signal-to-noise ratio of the three schemes, and hence promises the greatest tunability

Published in:

Lightwave Technology, Journal of  (Volume:16 ,  Issue: 12 )