By Topic

Electrostatic solution for three-dimensional arbitrarily shaped conducting bodies using finite element and measured equation of invariance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Henderson, J.H. ; Harris Corp., Melbourne, FL, USA ; Rao, S.M.

Differential equation techniques such as the finite element (FE) and finite difference (FD) have the advantage of sparse system matrices that have relatively small memory requirements for storage and relatively short central processing unit (CPU) time requirements for solving electrostatic problems. However, these techniques do not lend themselves as readily for use in open-region problems as the method of moments (MoM) because they require the discretization of the space surrounding the object where the MoM only requires discretization of the surface of the object. A relatively new mesh truncation method known as the measured equation of invariance (MEI) is investigated augmenting the FE method for the solution of electrostatic problems involving three-dimensional (3-D) arbitrarily shaped conducting objects. This technique allows truncation of the mesh as close as two node layers from the object. The MEI views sparse-matrix numerical techniques as methods of determining the weighting coefficients between neighboring nodes and finds those weights for nodes on the boundary of the mesh by assuming viable charge distributions on the surface of the object and using Green's function to measure the potentials at the nodes. Problems in the implementation of the FE/MEI are discussed and the method is compared against the MoM for a cube and a sphere

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:46 ,  Issue: 11 )