By Topic

Technology scaling effects on multipliers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Al-Twaijry, H.A. ; Comput. Syst. Lab., Stanford Univ., CA, USA ; Flynn, M.

Since integrated circuits were invented, fabrication engineers have been able to steadily decrease the dimensions of the devices (transistors). These reductions in the minimum feature sizes have resulted in improved performance. In addition, the dimensions of the interconnect used to connect the active transistors have also scaled. The decreasing dimensions of the physical devices causes the capacitance and resistances of the different parts of the multiplier to change. Therefore, the relative delay due to each part of the multiplier changes. In addition, the different encoding schemes used to generate the partial products and the different topologies used in the reduction of the partial products effect the total latency of the multiplier. This paper examines the effects of the smaller device dimensions on multipliers. It shows that the interconnect is becoming more important and that automatic generation of partial products provides the minimum latency for small feature sizes

Published in:

Computers, IEEE Transactions on  (Volume:47 ,  Issue: 11 )